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ABSTRACT

The accuracy and the potential economic value of categorical and probabilistic forecasts of discrete events
are discussed. Accuracy is assessed applying known measures of forecast accuracy, and the potential economic
value is measured by a weighted difference between the system probability of detection and the probability of
false detection, with weights function of the cost–loss ratio and the observed ratio and the observed relative
frequency of the event.

Results obtained using synthetic forecast and observed fields document the sensitivity of accuracy measures
and of the potential forecast economic value to imposed random and systematic errors. It is shown that forecast
skill cannot be defined per se but depends on the measure used to assess it: forecasts judged to be skillful
according to one measure can show no skill according to another measures. More generally, it is concluded that
the design of a forecasting system should follow the definition of its purposes, and should be such that the
ensemble system maximizes its performance as assessed by the accuracy measures that best quantify the achieve-
ment of its purposes.

Results also indicate that independently from the model error (random or systematic) ensemble-based prob-
abilistic forecasts exhibit higher potential economic values than categorical forecasts.

1. Introduction

Numerical weather predictions are often expressed in
the form of categorical or probabilistic forecasts of dis-
crete predictands (a discrete predictand is an observable
variable that takes one and only one of a finite set of
possible values). A typical example is the prediction of
more than 10 mm of precipitation or of temperature
below freezing. The prediction of discrete events can
be based either on categorical forecasts (‘‘the event will/
will not occur’’) or on probabilistic forecasts (‘‘there is
a 30% probability of occurrence’’). Generally speaking,
categorical forecasts are defined as forecasts consisting
of a flat statement that one and only one of a possible
set of events will occur (Wilks 1995). Probabilistic fore-
casts are forecasts given in terms of a probability that
a considered event would happen.

Numerical weather forecasts are often used by de-
cision makers to decide whether or not to take an action
to protect against a possible loss. Typically, a decision
maker would spend an amount C, if an event were pre-
dicted, to protect against a loss L (with L . C). The
potential economic value of a forecasting system can
be assessed by using skill measured defined by coupling
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contingency tables and cost–loss decision models (Katz
et al. 1982; Murphy 1985; Wilks and Hamill 1995).

In this work, the potential economic value of a fore-
cast is defined, as in Richardson (2000), by a function
of the probability of detection and the probability of
false detection of the system. Since this measure is de-
fined for both categorical and probabilistic forecasts, it
can be used to compare the potential economic value
of a single forecast and of an ensemble forecasting sys-
tem.

Forecasts and observed values are compared over set
of NG 5 1581 contiguous points, which can be consid-
ered as representing Europe (latitude 308N # f # 608N,
longitude 208W # l # 308E) on a 18 regular grid.
Synthetic observed and forecast patterns are defined as
a combination of two-dimensional Gaussian functions
and random fields. The sensitivity of different measures
of forecast accuracy to imposed errors is investigated,
and the potential economic benefit of an ensemble fore-
casting system instead of a single deterministic forecast
is assessed.

The following aspects of the forecast accuracy and
potential economic value of categorical and probabilis-
tic forecasts are investigated in particular.

R The sensitivity of categorical deterministic and prob-
abilistic forecasts to imposed model errors.

R The relative potential economic value of single de-
terministic and probabilistic forecasts.
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FIG. 1. Schematic of the definition of the forecast and observed
fields (Gaussian functions).

TABLE 1. Contingency table for dichotomous event.

Observed

Yes No

Marginal
distribution of

the forecast

Forecast Yes
No

a/n
c/n

b/n
d/n

(a 1 b)/n
(c 1 d)/n

Marginal
distribution
of the obs (a 1 c)/n (b 1 d)/n n 5 a 1 b 1 c 1 d

R The sensitivity of the potential economic value of
probabilistic predictions to ensemble size and model
accuracy.

After this introduction, section 2 describes how the
synthetic observed and forecast patterns are defined. The
accuracy measures for categorical and probabilistic
scores are introduced in section 3 and are applied to a
single-case study in section 4. The average sensitivity
(90-case average) of the accuracy measures and the po-
tential economic value is investigated in section 5. The
potential economic values of single deterministic and
probabilistic forecasts are also compared in section 6.
Conclusions are drawn in section 7.

2. Definition of synthetic forecast and observed
fields

Denote by gj(l, f) a Gaussian function of the lon-
gitude l and the latitude f:

g (l, f)j

2cosu · (l 2 l ) 1 sinu · (f 2 f )j j j j
5 A exp 2j 5 6[ ]Ï2 · sx,j

22sinu · (l 2 l ) 1 cosu · (f 2 f )j j j j
3 exp 2 ,5 6[ ]Ï2 · sy,j

(1)

defined by the maximum amplitude Aj, the rotation an-
gle uj, the coordinate of the maximum value lj and fj,
and the standard deviations sx,j and sy,j along the un-
rotated original axis. Figure 1a shows schematically

how parameters l j, fj, and uj define the position and
the orientation of the Gaussian function gj(l, f), and
Fig. 1b shows how parameters Aj, sx,j, and sy,j define
its shape.

Equation (1) can be used to define an observed pattern
f 0(l, f) and an ensemble of forecasts f j(l, f), with
each function defined by a different set of parameters
Aj, uj, l j, fj, sx,j, and sy,j:

f (l, f) 5 c (l, f) · g (l, f),j j j (2)

where cj(l, f) is either a constant function, specifically
cj(l, f) 5 1, or it is defined by a set of random numbers
cj(l, f) uniformly sampled in the interval [0, 2] [this
choice guarantees a rescaling of the field gj(l, f) by up
to 100%]. Hereafter, j 5 0 will identify the verification
pattern, j 5 1, 51 will identify the ensemble of forecast,
and j 5 1 will identify the control forecast (note that
the control forecast is not different from any randomly
chosen ensemble member).

The 51 ensemble forecasts can be used to construct
categorical products like, for example, the forecast given
by the ensemble mean,

511
f (l, f) 5 f (l, f), (3)O j51 j51

and probability forecasts, defined by the probability of
occurrence of the event

n (l, f)f
p (l, f) 5 , (4)f 51

where nf (l, f) is the number of forecasts predicting the
event at the grid point with coordinates (l, f). The
spread s(l, f) of the ensemble is defined as the ensemble
second-order moment or standard deviation, that is, as
the root-mean-square distance

1/2511
2s(l, f) 5 [ f (l, f) 2 f (l, f)] . (5)O j5 651 j51

Alternatively, the ensemble spread could be defined
as the average distance of a randomly chosen pair of
forecasts, or as the average distance of the control fore-
cast (j 5 1) from the other members.

3. Verification scores

A brief introduction of the scores used in this work
to measure the skill of categorical and probabilistic fore-
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casts of discrete dichotomous predictand (i.e., predic-
tand allowed to be in only two possible states, yes or
no) is reported hereafter. The reader is referred to Wilks
(1995) for more details.

a. Scores for categorical forecasts

Categorical verification of dichotomous (i.e., binary)
events can be based on the 2 3 2 contingency table that
displays the number of all possible combinations of
forecast and observed events (Table 1). The perfor-
mance of each of the Nens forecasts defined in Eq. (2)
is measured by a contingency table constructed by add-
ing an entry to the 2 3 2 contingency for each of the
g 5 1, NG grid points inside the area under investigation.
A perfectly accurate forecast would clearly exhibit b 5
c 5 0 in its corresponding contingency table.

1) SOME MEASURES OF FORECAST ACCURACY FOR

BINARY EVENTS (HIT RATE, THREAT SCORE,
PROBABILITY OF DETECTION, AND PROBABILITY

OF FALSE DETECTION)

Accuracy measures summarize the correspondence
between individual forecasts and occurred events. De-
note by pcli 5 (a 1 c)/n the observed frequency of the
event under consideration. Four of the most commonly
used measures of accuracy (i.e., of the average corre-
spondence between individual forecasts and the events
they predict; see Wilks 1995) are the hit rate, the threat
score, the probability of detection, and the probability
of false detection (Doswell et al. 1990).

The hit rate

a 1 d
HR 5 (6)

n

measures the proportion of correct forecasts. Note that
it gives the same credit to correct yes and no forecasts.

The threat score

a
TS 5 (7)

a 1 b 1 c

is the number of correct yes forecasts divided by number
of cases when the event was forecast and/or observed.
It can be viewed as the hit rate after removals of correct
no forecasts.

The probability of detection

a a 1
POD 5 5 (8)

a 1 c n pcli

is the probability that the occurred event would be fore-
cast.

The probability of false detection

b b 1
PFD 5 5 (9)

b 1 d n (1 2 p )cli

is the proportion of nonoccurrences incorrectly forecast
(Doswell et al. 1990).

2) BIAS

The bias measures the correspondence between the
average forecast and the average observed value of the
predictand. The bias

a 1 b
B 5 (10)

a 1 c

is the ratio of the number of yes forecasts to the number
of observed events. By definition, the bias does not
depend on the individual correspondence between fore-
cast and observed values, and so it is not a measure of
accuracy.

3) THE KUIPERS SKILL SCORE

Forecast skill refers to the accuracy of a forecast with
respect to a reference forecast. Standard choices for the
reference are climatological average values, persistent
forecasts, or random forecasts. For any chosen measure
of accuracy A, the skill score SSA of a forecast with
accuracy Af with respect to the reference forecast with
accuracy Aref is given by

A 2 Af ref
SS 5 100%, (11)A A 2 Aperf ref

where Aperf is the accuracy of a perfect forecast.
One of the most commonly used skill scores used to

summarize square contingency tables is the Kuipers skill
score (Hanssen and Kuipers 1965; Murphy 1996), which
is based on the HR as accuracy measure. The reference
accuracy is the HR of an unbiased random forecast, that
is, with pref,D( fc 5 yes) 5 p(ob 5 yes) and, by definition,
aref,D 5 (a 1 b)2/n2 and dref,D 5 (b 1 d)2/n2. Thus, the
Kuipers skill score is

(ad 2 bc)
KSS 5 . (12)

(a 1 c)(b 1 d)

The Kuipers skill score can be written in terms of the
probability of detection POD and the probability of false
detection PFD:

KSS 5 POD 2 PFD. (13)

Note that both random and constant forecasts receive
the same zero score, and the contribution to KSS of
correct no (yes) forecasts increases as the event is more
(less) likely. It should be mentioned that the Kuipers
skill score approaches the probability of detection POD
when correct forecasts of no events dominate the con-
tingency table, and therefore it is vulnerable to hedging
in rare event forecasting (Doswell et al. 1990). Despite
this, and the fact that Doswell et al. (1990) argue that
the Heidke skill score (also called S statistics) should
be preferred, the Kuipers skill score will be used in this



2332 VOLUME 129M O N T H L Y W E A T H E R R E V I E W

TABLE 2. Table of occurrences/nonoccurrences for ROC
area definition.

Category
index Probability range

Observed

Yes No

1
· · ·

j
· · ·
Nens

0 # pf , 1/Nens

· · ·
(j 2 1)/Nens # pf , j/Nens

· · ·
(Nens 2 1)/Nens # pf # 1

x1

· · ·
xj

· · ·
xNens

y1

· · ·
yj

· · ·
yNens

TABLE 3. Cost–loss decision model.

Observed

Yes No

Take action Yes
No

C
L

C
0

paper because of its relationship with the potential eco-
nomic value (see section 3c).

b. Scores for probabilistic forecasts

The most common scalar measure of the accuracy of
a probabilistic forecast of a dichotomous event is the
Brier score,

NG1
2BS 5 (p 2 o ) , (14)O f,g gN g51g

which is the mean squared error of the forecast prob-
ability pf ,g 5 pf (l, f), where the index g 5 1, NG denotes
the forecast–event pairs of all considered grid points.
The observed probability function is defined to be og

5 1 if the event occurs and og 5 0 if the event does
not occur. The Brier score can be computed as the sum
of three terms related to reliability, resolution, and un-
certainty:

BS 5 BS 2 BS 1 BS .rel res unc (15)

The Brier skill score BSS is defined as

BS 2 BS BS 1 BSref res relBSS 5 5 . (16)
0 2 BS BSref unc

One of the properties of the BS is that it can be con-
sidered a strictly proper score, in the sense that the BS
cannot be improved by forecasting something other than
one’s true beliefs about future weather events (i.e., hedg-
ing; see Wilks 1995).

Another measure of probabilistic forecast accuracy is
the area under a relative operating characteristic (ROC)
curve defined in signal detection theory (Mason 1982).
Consider the forecast probability distribution pf (l, f)
defined in Eq. (4), stratified according to observation
into 51 categories as in Table 2. For any given probability
threshold j, the entries of this table can be summed to
produce the four entries of a 2 3 2 contingency table:

j51 51

a 5 x b 5 y c 5 xO O Oj k j k j k
k5j11 k5j11 k51

j

d 5 y . (17)Oj k
k51

From each of the jth contingency tables, the probability
of detection PODj and the probability of false detection
PFDj can be computed. The 51 pairs (PFDj, PODj) can
be plotted one against the other on a graph. The result
is a smooth curve called the ROC curve.

As in Richardson (2000), the ROC area (ROCA) can
be converted into a skill score

ROCA 2 ROCAcliROCAS 5 5 2ROCA 2 1, (18)
ROCA 2 ROCAper cli

since ROCAper 5 1 for a perfect forecast, and ROCAcli

5 0.5 (ROCA 5 0.5 for a climatological forecast, since
PFD 5 POD 5 0.5).

The ranked probability skill score (RPSS; Epstein
1969; Murphy 1971) is another measure of probabilistic
forecast accuracy. Given a set of events related to the
same variable and characterized by a different amount
(e.g., consider precipitation events characterized by dif-
ferent rainfall amounts), the RPSS can be considered
an extension of the Brier skill score to multicategory
events (Wilks 1995). Let Jev be the number of (ranked)
forecast events, the forecast probability for the jthjpf ,g

event, and the observed probability function (withjog

5 1 if the kth event is observed, and 5 0 for j ±k jo og g

k), where g 5 1, Ng denotes the gth grid point. The grid
point ranked probability score RPSg is computed from
the squared error of the cumulative forecast and ob-
served probabilities:

2J m m

j jRPS 5 p 2 o . (19)O O Og f,g g1 2 1 2[ ]m51 j51 j51

The area-average ranked probability score RPS is de-
fined as

Ng1
RPS 5 RPS . (20)O gN g51g

The RPSS is defined with respect to a forecast based
on the sample

RPS 2 RPScliRPSS 5 . (21)
RPScli

Another measure of ensemble performance is the per-
centage of observed values lying outside the ensemble
forecast range, also called the percentage of outliers
(POUTL; Strauss and Lanzinger 1995). As a reference
value, POUTLref 5 2/52 for an ensemble system with
51 members that randomly samples the forecast prob-
ability density function.
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TABLE 4. Coefficients used to define the parameters of the
observed and the forecast values [Eq. (1)].

Parameter
Observed

value Fc mean value Fc range

Maximum Aj

Longitude lj

Latitude fj

Rotation uj

Standard deviation sx,j

Standard deviation sy,j

100
10
45
30
1.5
1

100
10
45
30
1.5
1

40
3
3

20
0.4
0.2

FIG. 2. (a) Observed and (b) control forecast fields for one case at
each grid point.

c. Potential forecast economic value

As in Richardson (2000), consider decision makers
interested in protecting from the occurrence of the event
under consideration. Suppose that if they take an action
incurring a cost C they can avoid a loss L (with L .
C). Table 3 summarizes this simple cost–loss model.

If the decision makers know only the observed fre-
quency pcli and assume that the sample observed fre-
quency is equal to the long-term climatology, their op-
timal strategy would be to always protect if C , pcliL,
and their expected mean expense per unit loss would
be

C
ME 5 min , p . (22)cli cli1 2L

If the decision makers have access to a perfect forecast,
than their mean expense per unit loss would be

C
ME 5 p , (23)perf cli L

since they would incur a cost C/L (per unit loss) only
in the pcli occasions when they protected themselves
against the loss (always avoided).

Suppose now that the decision makers have access to
a single deterministic forecast, which is taken at face
value (i.e., without adjusting the forecast for estimated
model errors), whose performance is summarized by
Table 1, and suppose that the observed frequency was
estimated from the sample, that is, pcli 5 (a 1 c)/n.
Then, from Tables 1 and 3 it follows that their mean
expense (per unit loss) would be

(a 1 b) C c
ME 5 1

n L n

C C
5 PFD(1 2 p ) 2 PODp 1 2 1 p . (24)cli cli cli1 2L L

The potential economic value FV of the forecast is de-
fined as the reduction of the mean expense with respect
to the reduction of the expense that could be achieved
by a perfect forecast:

ME 2 MEcliFV 5 . (25)
ME 2 MEperf cli

Applying Eqs. (22), (23), and (24) and the definition of
the Kuipers skill score, the potential forecast economic
value can written as

C C C
(1 2 POD) p 2 min , p 1 PFD 2 min , pcli cli cli1 2 1 2[ ] [ ]L L L

FV 5 KSS 2 . (26)
C C

min , p 2 pcli cli1 2L L
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FIG. 3. (a) Observed frequency (i.e., sample climatology) pcli. (b) Bias (solid line), TS (dashed line), POD (dotted
line), and KSS (chain-dashed line) for the control forecast (note that the POD and the KSS curves are superimposed).
(c) Forecast value for 1 (solid line), 5 (dashed line), 10 (dotted line), and 40 mm (chain-dashed line) for the control
forecast. (d) KSS for the control forecast (solid line), the ensemble mean forecast (dashed line), the 50 ensemble
members (dotted line), and 51-member average KSS (chain-dashed line).

From Eq. (26) it is easy to see that

R if C/L . pcli then

C
2 pcli1 2L

FV 5 KSS 2 PFD ;
C

p 1 2cli1 2L

R if C/L , pcli then

C
p 2cli1 2L

FV 5 KSS 2 (1 2 POD) ;
C

(1 2 p )cliL

R when C/L 5 pcli the forecast value is maximum, FV
5 KSS.

Equation (26) and subsequent equations highlight the
fact that given the observed frequency of the event pcli

and the user cost–loss ratio C/L, the forecast value de-
pends only on the probability of false detection and the
probability of detection of the system [since by defi-
nition KSS 5 POD 2 PFD; see Eq. (13)]. Furthermore,
these equations show that the potential economic value
is a weighed difference between the probability of de-
tection and of false detection of the system, with weights
a function of the event observed frequency (climatol-

ogy) and the user cost loss ratio. Equation (26) also
indicates that the Kuipers skill score of the system can
be considered as the maximum forecast value that can
be obtained from the system.

Finally, suppose that the decision makers have access
to the whole ensemble of forecast f j, which is again
taken at face value (i.e., without adjusting the forecast
for estimated model errors). As for the computation of
the ensemble ROC area, consider the 51 pairs (PFDj,
POD j) computed from the 2 3 2 contingency tables
associated with the 51 probability thresholds. Applying
Eq. (26), the 51 forecast values FVj associated with the
jth probability threshold can be computed. Given the
observed frequency of the event pcli , for each cost–loss
ratio the forecast value of the ensemble is defined as

C C
FV 5 max FV . (27)ens j1 2 1 2L Lj51,51

Equation (27) shows that each user can optimize the
ensemble forecast value for each cost–loss ratio C/L by
choosing the probability threshold that has maximum
value at that specific ratio.

4. Scores of categorical and probabilistic forecasts:
A single-case study

Denote by f 0(l, f) an observed pattern defined by
(A0 5 100, l0 5 10, f0 5 45, f0 5 30, sx,0 5 1.5,
sy,0 5 1), and denote by f j(l, f) an ensemble of fore-
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FIG. 4. (a) BSS (solid line), ROCAS (dashed line), and RPSS (dot-
ted line) for the ensemble probabilistic prediction of different amounts
of precipitation. (b) Forecast value FVj of each of the j 5 1, Nens

probability thresholds for the probabilistic prediction of more than
10 mm.

casts defined by randomly sampling the parameters (Aj,
lj, fj, uj, sx,j, sy,j) in the intervals defined in Table 4.
These patterns can be considered to represent an ob-
served and a forecast precipitation field. Since the pa-
rameters used to define the observed pattern are included
in the range of the forecast parameters, the ensemble is
reliable. Furthermore, by construction each ensemble
member is, on average, equally skillful. It is worthwhile
to remind the reader that the results discussed in this
section refer to one case only and thus may present some
peculiar features.

Figure 2 shows the observed pattern f 0(l, f) and the
control forecast f 1(l, f) defined by (A1 5 102, l1 5
12, f1 5 44, u1 5 50, sx,1 5 1.4, sy,1 5 1.1). Figure
3a shows the observed frequency pcli of events char-
acterised by a different value, that is, by a different
amount of precipitation. Note that all frequencies are
smaller than 0.03, indicating quite rare events for any
threshold.

The control forecast is practically unbiased, with a
higher threat score for low precipitation amounts and
with a positive skill score KSS up to 70 mm (Fig. 3b).
The fact that the KSS and the POD curves overlap in-
dicates a very low PFD [see Eq. (13)] and is a conse-
quence of the fact that correct forecasts of no event
dominates the contingency table (Doswell et al. 1990).
As mentioned in section 3, the forecast value depends
on the cost–loss ratio C/L and on the event observed
frequency (Fig. 3c), and its upper bound is given by the
Kuipers skill score KSS. This is evident by the com-
parison of Figs. 3b and 3c. Figure 3d shows the Kuipers
skill score KSS for the whole ensemble compounded of
the control forecast and the 50 other forecasts. Figure
3d shows that the Kuipers skill score of the ensemble
mean forecast (dashed line) is more skillful than the
control forecast (solid line) for precipitation amounts up
to 50 mm.

The 51 ensemble forecasts have been used to generate
probability forecasts of different precipitation amounts.
Figure 4a shows that the probability forecasts have a
positive Brier skill score for amounts up to 70 mm. The
BSS of the ensemble forecast decreases with the thresh-
old amount in a way similar to the KSS and the TS of
the control forecast. By contrast, the ROC area skill
score is always equal to 1 and does not decrease with
the precipitation threshold, due to very low probabilities
of false detection. Figure 4a also shows that the RPSS
is always positive (dotted line; constant since it is an
integrated measures computed considering all the pre-
cipitation amounts). Figure 4b shows the potential fore-
cast value FVj for all the probability thresholds j 5 1,
Nens for the prediction of more than 10 mm of precip-
itation. Note that different probability thresholds for
each cost–loss ratio achieve the maximum potential
forecast value.

By definition any score depends on the area onto
which they are computed. This sensitivity to the area
definition is shown by the comparison of the forecast

scores computed over a European subregion centered
around the observed pattern (408 # latitude # 508N, 08
# longitude # 208E, 231 grid points) with the scores
computed over the whole European area (1581 grid
points). The reduction of the verification area induces
an increase in the observed relative frequency pcli by
about a factor of 7 (see Fig. 5a for the small area and
Fig. 3a for Europe). Since the contingency tables for
the two areas differ mainly in the number of correctly
forecast nonoccurrences, the only verification scores
that are sensitivity to the area reduction are the scores
that depend on the ‘‘d’’ entry of the 2 3 2 contingency
table. Indeed, the bias, the threat score, and the prob-
ability of detection do not change (see Figs. 3b and 5b).
By contrast, the probability of false detection changes,
and this affects the Kuipers skill score (see Figs. 3b and
5b) and the forecast value (see Figs. 3c and 5c). Sim-
ilarly, the Kuipers skill score of all the ensemble fore-
casts (not shown) and the forecast value of probabilistic
forecast of precipitation amounts are affected (see Figs.
4b and 5d).

5. Scores sensitivity: A single-case study

The sensitivity of the forecast scores to a priori im-
posed errors due to amplitude under/overestimation, to
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FIG. 5. Forecast scores over a small region. (a) Observed frequency (i.e., sample climatology) pcli; (b) bias (solid
line), TS (dashed line), POD (dotted line), and KSS (chain-dashed line) for the control forecast; (c) forecast value for
1 (solid line), 5 (dashed line), 10 (dotted line), and 40 mm (chain-dashed line) for the control forecast; (d) forecast
value FVj of each of the j 5 1, Nens probability thresholds for the probabilistic prediction of more than 10 mm.

position errors and to ‘‘shape errors’’ (i.e., errors in the
definition of the width of the Gaussian function) is in-
vestigated hereafter. All results discussed in this section
refer to the prediction of 10 mm.

Figure 6a shows the sensitivity of the control scores
to amplitude errors. Results have been obtained by set-
ting all parameters apart for A1 as in Table 4 (as in
section 4) and with 0 # A1 # 200 (i.e., with 0 # A1 /A 0

# 200 since A 0 5 100 for the observed field; see Table
4). It is interesting to note that for this precipitation
amount (10 mm) the threat score is always positive for
any A1 . 0. The threat score relative, for example, to
the prediction of 40 mm is zero for A1 /A 0 , 0.6 (not
shown.)

Consider now an ensemble of 50 forecasts defined by
(Aj, lj, f j, uj, sx,j, sy,j) generated as follows. For each
A1, the ensemble of 50 parameters Aj (j 5 2, 51) is
sampled in the interval max(0, A1 2 40) , Aj , (A1 1
40), while all the other parameters are sampled accord-
ing to Table 4 (e.g., by setting 7 # lj # 13). Figure 6b
shows the TS, the POD, and the KSS of the ensemble
mean forecast. As for the control forecasts, the ensemble
mean scores are sensitive to the amplitude errors. Com-
pared to the control forecast (Fig. 6a), the ensemble
mean has higher TS and KSS than the control for any
A1/A0 . 0.2. Figure 6c shows the BSS, the ROCAS,
and the RPSS for the probabilistic prediction. The BSS
and the RPSS show a sensitivity to A1/A0 similar to the
sensitive shown by the control and the ensemble mean
forecasts, with smaller BSS and RPSS for A1/A0 . 0.6.

By contrast, the ROCAS is 1 for any ratio A1/A0 . 0
and the POUTL is zero for any A1/A0 (not shown).

Figure 7a shows the sensitivity of the control scores
to a position error in predicting the longitude of the
precipitation maximum (parameter l). All parameters
but l1 were defined according to Table 4, while 08 #
l1 # 208E [i.e., with errors 210 # (l1 2 l0) # 10
since l0 5 10E for the observed field; see Table 4].
Results indicate that the (unbiased) control forecast is
skillful only for a certain range of position errors, with
this range depending on the precipitation amount and
of the width (s parameters) of the observed and forecast
fields. As before, for each l1 an ensemble of 50 forecasts
have been generated, each with a different parameter lj

sampled in the interval (l1 2 3) # lj # (l1 1 3). Figure
7b shows the sensitivity to the position error of the
ensemble mean scores and Fig. 7c the sensitivity of the
scores of the probabilistic predictions. Compared to the
control forecast (Fig. 7a), the ensemble mean (Fig. 7b)
has higher TS and KSS, but it has also a larger bias
(see Hamill 1999 for a discussion on the impact of model
bias on verification scores such as the equitable threat
score). The scores of the probability forecasts show a
strong sensitivity to the forecast position error (Fig. 7c).
Large position errors induce low values of ROCAS,
negative BSS and RPSS, and high POUTL. The fact
that forecasts with a positive ROCAS have negative
Brier skill score and negative RPSS confirm the fact
that different measures of forecast quality give different
results. Generally speaking, the comparison between
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FIG. 6. Sensitivity of forecast scores of the control to amplitude
errors. (a) Bias (solid line), TS (dashed line), POD (dotted line), and
KSS (chain-dashed line) for the control forecast. (b) As in (a) but
for the ensemble mean. (c) BSS (solid line), ROC area skill score
(dashed line), and RPSS (dotted line) for the prediction of 10 mm.
Ordinate: scores. Abscissa: imposed error in the control amplitude
A1/A0.

FIG. 7. Sensitivity of forecast scores of the control to longitude
position errors. (a) Bias (solid line), TS (dashed line), POD (dotted
line), and KSS (chain dashed line) for the control forecast. (b) As in
(a) but for the ensemble mean. (c) BSS (solid line), ROC area skill
score (dashed line), RPSS (dotted line), and POUTL (chain-dashed
line) for the prediction of 10 mm. Ordinate: scores. Abscissa: imposed
position error of the control forecast (l1 2 l0).

Figs. 6 and 7 suggest that a position error has a more
severe effect on the forecast scores than an amplitude
error. Similar results would have been obtained by vary-
ing the latitude of the maximum value (not shown).

Figure 8 shows the sensitivity to errors in the pre-
diction of the Gaussian function standard deviation
along the (unrotated) x axis, that is, s1,x. All parameters
but s1,x were defined according to Table 4, while 0.75
# s1,x # 3.758 (i.e., with 0.5 # s1,x/s0,x # 2.5 since
s0,x 5 1.58 for the observed field; see Table 4). Results

show that the ensemble mean scores are higher than the
scores of the control forecast for any s1,x (Figs. 8a,b)
and that of the ensemble scores of the probabilistic pre-
cipitation prediction deteriorate for too small or too
large s1,x (Fig. 8c), that is, if each forecast field is too
narrow or too wide.

In Fig. 8c, the fact that POUTL . 0 for large s1,x is
related to the way all forecast parameters are set (see
Table 4). These results document the sensitivity of the
different measures of skill to under/overestimation, to
position errors, and to errors in the prediction of the
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FIG. 8. Sensitivity of forecast scores of the control to errors in sx

(area coverage). (a) Bias (solid line), TS (dashed line), POD (dotted
line), and KSS (chain-dashed line) for the control forecast. (b) As in
(a) but for the ensemble mean. (c) BSS (solid line), ROC area skill
score (dashed line), RPSS (dotted line), and POUTL (chain-dashed
line) for the prediction of 10 mm. Ordinate: scores. Abscissa: imposed
error on the control forecast standard deviation sx,1/sx,0.

correct shape (s parameter) of the observed pattern.
They also show that forecasts judged to be skillful ac-
cording to one measure of forecast skill could be judged
not to have any skill according to others. Furthermore,
they indicate that a reliable ensemble can be used to
construct a single deterministic forecast (i.e., the en-
semble mean) that is more skillful than each single en-
semble member. This aspect is further analyzed in the
following section, where categorical and probabilistic
forecasts are compared considering a larger dataset.

6. Potential economic value of categorical and
probabilistic forecasts: 90 cases average results

The impact of random and systematic model errors
on the average performance (90 cases) is investigated
hereafter.

a. Impact of random errors

A high quality forecasting system (no systematic
model error and with equally skillful ensemble mem-
bers) can be simulated by randomly sampling each of
the parameters that define the observed and the forecast
fields from the same interval.

Figure 9a shows the average scores of each single
deterministic forecast given by one ensemble member
(e.g., the control). The forecast has no bias, as expected
by construction, and has a positive Kuipers skill score
for all precipitation thresholds. Figure 9b shows the re-
liability, resolution, and uncertainty terms of the BS for
the ensemble probabilistic predictions: it indicates that
the ensemble is reliable (almost null Brier score reli-
ability term). Figure 9c shows that the ensemble has a
ROCAS above zero for all thresholds, a positive BSS
for thresholds up to 70 mm, a positive RPSS, and an
almost null percentage of outliers. Figures 9d–f show
the potential forecast value of the control and the en-
semble mean, and the potential forecast value of the
ensemble probabilistic predictions for three different
thresholds, 1, 10, and 40 mm. The comparison of the
potential forecast value curves confirms the indications
of section 5 that the ensemble mean is more valuable
than the control forecast, and that the ensemble prob-
abilistic prediction has a higher value than any deter-
ministic forecast. It is worth pointing out that all po-
tential economic value curves peak for very small cost–
loss ratios since all events are very rare, even for 1 mm.

In other words, decision makers interested in pre-
dicting a binary event ‘‘rainfall greater than an amount
x’’ would have a higher return if they make decisions
(protect/nonprotect) according to the ensemble proba-
bilistic forecast than to any single deterministic forecast.
This result is summarized in the potential forecast value
chess boards shown in Fig. 10. For any cost–loss ratio
and any threshold amount, the potential forecast value
is higher if actions are taken according to the ensemble
probabilistic forecast rather than the control or the en-
semble mean forecast (not shown).

Similar results have been obtained when a second
source of random error [i.e., for forecasts defined ap-
plying Eq. (2) with cj (l, f) set to be a random number
uniformly sampled in the interval 0 # cj (l, f) # 1]
has been introduced in the generation of the ensemble
forecasts (not shown).

b. Impact of systematic over/underestimation

Consider now two ensemble systems characterized by
random errors (as for the ensemble discussed in section



SEPTEMBER 2001 2339B U I Z Z A

FIG. 9. Average performance (90 cases) of an ensemble system affected only by random errors. (a) Bias (solid line),
TS (dashed line), POD (dotted line), and KSS (chain-dashed line) for the control forecast. (b) Brier score reliability
(solid line, multiplied by 100), resolution (dashed line, multiplied by 100), and uncertainty (dotted line, multiplied by
100) terms, and full Brier score (chain dashed line, multiplied by 100) for probabilistic predictions. (c) BSS (solid line),
ROC area skill score (dashed line), RPSS (bold dotted line), and POUTL (chain-dashed line) for probabilistic predictions.
(d) Forecast value for the probabilistic prediction of 1 mm for the control (solid line), the ensemble mean (dashed line),
and the ensemble probabilistic prediction (dotted line). (e) As in (d) but for 10 mm. (f ) As in (d) but for 40 mm.

6a) and by a 40% under- or overestimation of the pre-
cipitation maxima. These results have been obtained by
defining the forecasts as in section 6a but by multiplying
the coefficient A0 of the observation field by a factor of
0.6 or by a factor of 1.4. These examples can be thought
to describe the performance of ensemble systems based
on a model characterized by a poor simulation of moist
processes that induces either a rainfall overestimation
or underestimation. Figure 11 shows the performance
of these two systems.

On average, under or overestimation errors induces
a bias on each single deterministic forecast (see Figs.
11a,b and 9a), especially for thresholds larger than 60
mm, and it has a sizeable impact on the threat scores
and the Kuipers skill scores for thresholds larger than

60 mm. The bias curve for the ensemble characterized
by overestimation (Fig. 11b) drops to zero for precip-
itation values larger than 60 mm because, by construc-
tion, 60 mm is the maximum observed value. Consid-
ering the ensemble probabilistic predictions, both over-
or underestimation have a sizeable impact on the RO-
CAS for thresholds larger than 60 mm, while
overestimation has a larger impact than underestimation
on the BSS for thresholds. The impact of over- or un-
derestimation on the potential forecast value reflects the
impact on the ROCAS, that is, small for small thresholds
(say, up to 40 mm; see Figs. 11e,f for the 10-mm thresh-
old) and large for larger values (not shown). It is worth-
while to point out that the potential forecast value curves
for the system affected by underestimation are to the
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FIG. 10. Forecast value chess board (90 cases) of an ensemble system affected only by random errors for (a) the
control forecast and (b) the ensemble probabilistic prediction. Symbols for forecast values are crosses for 0.05 , FV
# 0.25, squares for 0.25 , FV # 0.50, full gray square for 0.50 , FV # 0.75, and full circles for 0.75 , FV.

FIG. 11. Average performance (90 cases) of an ensemble characterized by a systematic 40% underestimation (left
column) and by a 40% overestimation (right column). [(a), (b)] Seasonal average score of the control forecast: bias
(solid line), TS (dashed line), POD (dotted line), and KSS (chain-dashed line). [(c), (d)] Seasonal average probability
scores: BSS (solid line), ROC area skill score (dashed line), RPSS (bold dotted line), and POUTL (chain-dashed line).
[(e), (f )] forecast value curves for the probabilistic prediction of 10 mm for the control (solid line), the ensemble mean
(dashed line), and the ensemble probabilistic prediction (dotted line).
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FIG. 12. Average performance (90 cases) of an ensemble characterized by a systematic 38 position error (left column)
and by a 68 position error (right column). [(a), (b)] Seasonal average score of the control forecast: bias (solid line), TS
(dashed line), POD (dotted line), and KSS (chain-dashed line). [(c), (d)] Seasonal average probability scores: BSS
(solid line), ROC area skill score (dashed line), RPSS (bold dotted line), and POUTL (chain-dashed line). [(e), (f )]
Forecast value curves for the probabilistic prediction of 10 mm of rain for the control (solid line), the ensemble mean
(dashed line), and the ensemble probabilistic prediction (dotted line).

left of the forecast value curves of the system affected
by overestimation (Figs. 11e,f). This indicates that, de-
pending on whether a user has a high or low cost–loss
ratio C/L, it could be more valuable to under- or over-
estimation.

c. Impact of systematic position errors

Consider now two ensemble systems characterized by
random errors (as for the ensemble discussed in section
6a) and by a 38 or a 68 position error (which is two or
four times the standard deviation of the observed pat-
tern; see Table 4). These results have been obtained by
defining the forecasts as in section 6a but by shifting
the position of the maximum value of each day verifi-
cation field by 38 or 68. These examples can be thought

to describe the performance of an ensemble of forecasts
generated by a model with a tendency to predict too
weak zonal flows. Figure 12 shows the performance of
these systems.

The impact on the average scores of each single fore-
cast of either a 38 or a 68 error is very small (see Figs.
12a,b and 9a) and almost undetectable on the threat
score and the Kuipers skill score. The impact is larger
on the probabilistic predictions (see Figs. 12c,d and 9c)
especially for thresholds of 20 mm or more. Results
show that for thresholds larger than 30 or 20 mm, re-
spectively, a 38 or 68 position error makes the BSS neg-
ative. The impact on the potential forecast value reflects
the impact on the ROCAS (see Figs. 12e,f and 9d).

It is interesting to compare these results of this section
with the results obtained in the previous section. In par-
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FIG. 13. Average performance (90 cases) of an ensemble characterized by a systematic two times too small prediction
of sx,j (left column) and by a two times too large prediction of sx,j (right column). [(a), (b)] Seasonal average score of
the control forecast: bias (solid line), TS (dashed line), POD (dotted line), and KSS (chain-dashed line). [(c), (d)]
Seasonal average probability scores: BSS (solid line), ROC area skill score (dashed line), RPSS (bold dotted line), and
POUTL (chain-dashed line). [(e), (f )] forecast value curves for the probabilistic prediction of 10 mm of rain for the
control (solid line), the ensemble mean (dashed line), and the ensemble probabilistic prediction (dotted line).

ticular, the comparison of the potential forecast value
for the 10-mm threshold (see Figs. 11e,f; 12e,f; and 9c)
indicate that systematic position errors of 38 to 68 (i.e.,
of 2 to 4 standard deviation) reduce the potential forecast
value of single deterministic and probabilistic forecasts
more than systematic over- or underestimation errors of
40%.

d. Impact of systematic ‘‘shape’’ errors

Consider now two ensemble systems characterised by
random errors (as for the ensemble discussed in section
6a) and by a systematic prediction of a too broad or too
narrow precipitation field. More specifically, consider
two ensemble systems defined by a two times too small
or too large sx,j. These results have been obtained by

defining the forecasts as in section 6a but by rescaling
sx,0 by a factor of 2 or by a factor of 0.5. Figure 13
shows the performance of these systems.

The impact on the average scores of each single fore-
cast of predicting two times too small or too large sx,j

is qualitatively similar to the impact of under or over-
estimation. The prediction of a two times too small sx,j

leads to an average bias of 0.5 (Fig. 13a), while the
prediction of a two times too large sx,j leads to an av-
erage bias of 2.0 (Fig. 13b). Qualitatively similar to the
impact of under- or overestimation, the prediction of a
two times too small sx,j has a small impact on the prob-
abilistic scores (Fig. 13c) while the prediction of a two
times too large sx,j leads to negative Brier skill scores
for all thresholds (Fig. 13d). The impact on the ROCAS
is smaller than the impact on the Brier skill score, and
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FIG. 14. Potential forecast value as a function of the precipitation amount and the cost–loss ratio for ensemble
configuration (a) E51p6d, (b) E51p3d, (c) E11p3d, and (d) E5p1.5d. Symbols for forecast values are crosses for 0.05 ,
FV # 0.25, squares for 0.25 , FV # 0.50, full gray square for 0.50 , FV # 0.75, and full circles for 0.75 , FV.

it is similar for both too small or too large predicted
sx,j (Figs. 13c,d). It is worthwhile to point out that the
potential forecast value curves for the system affected
by a two times too small sx,j are shifted to the right with
respect to the forecast value curves of the system af-
fected by two times too large sx,j (Figs. 13e,f). Again,
note that this shift is qualitatively similar to the shift of
the forecast value curves of systems affected by over-
or underestimation (Figs. 11e,f).

e. Impact of ensemble size and systematic model
(position) errors

Consider now four ensemble configurations, each of
them characterized by a different ensemble size and
based on models with different systematic errors. En-
semble E51p6d has 51 members and uses a model af-
fected by a 68 systematic position error; ensembles
E51p3d and E11p3d have, respectively, 51 and 11 mem-
bers with a 38 systematic position error; and finally
E5p1.5 has only 5 members with a 1.58 systematic po-
sition error. The comparison of the performance of the
four ensembles helps in addressing the question of
whether an ensemble with a small ensemble size but
based on an accurate forecast model has higher potential
forecast value than an ensemble based on a larger set
of integrations of a less accurate model. Figure 14 shows

the potential forecast value for the four ensemble con-
figurations.

The comparison of the potential forecast value of con-
figurations E51p6d and E51p3d (Figs. 14a,b) confirms
the results discussed above: that a reduction of model
systematic error increases the forecast value. The com-
parsion of the potential forecast value of configurations
E51p3d and E11p3d (Figs. 14b,c) shows that a 90% re-
duction of the ensemble size decreases the forecast value
of an ensemble system based on an accurate model to
almost the same level as configuration E51p6d, which
is based on a poor model (Fig. 14a). On the other hand,
Fig. 14d confirms that a further reduction of the model
systematic error can increase the potential forecast val-
ue. In other words, these results indicate that the po-
tential forecast value of an ensemble system is strongly
dependent on both ensemble size and model accuracy
(in this particular case the potential forecast value is
more sensitive to model error than ensemble size).

f. Sensitivity of the ensemble performance to
ensemble spread

The results presented so far did not analyze the sen-
sitivity of the ensemble scores on the ensemble spread.
This point has to be addressed since any ensemble sys-
tem must have the right level of spread to be able to
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FIG. 15. (a) Sensitivity of the scores of the ensemble mean forecast
of 10 mm to the ensemble spread: bias (solid line), TS (dashed line),
POD (dotted line), and KSS (chain-dashed line). (b) Sensitivity of
the ensemble probability scores for the prediction of 10 mm of pre-
cipitation: BSS (solid line), ROC area skill score (dashed line), RPSS
(dotted line), and POUTL (chain-dashed line). Ordinate: forecast
score. Abscissa: ensemble forecast range (lj 2 l1).

FIG. 16. Forecast value for (a) the ensemble mean and (b) the
ensemble probabilistic prediction of 10 mm for different levels of
spread simulated by varying the ensemble forecast range for the pa-
rameter lj (spread ranging from small to large): (lj 2 l1) 5 0 (solid
line), (lj 2 l1) 5 6 (dashed line), (lj 2 l1) 5 10 (dotted line), (lj

2 l1) 5 14 (chain-dashed line), and (lj 2 l1) 5 20 (thin solid line).

include the verification inside the range spanned by the
ensemble forecast. On the other hand, it is worth in-
vestigating whether ensemble systems with a wrong lev-
el of spread may anyway provide probabilistic forecasts
with a higher potential economic value than single de-
terministic forecasts.

Consider an ensemble of forecasts characterized by
a mean position error of 68 in longitude (lj 2 l0 5 68),
with the observed and the predicted Gaussian distri-
butions characterized by 1.1 # sx,j # 1.9 and 0.8 # sy,j

# 1.2. Suppose that the ensemble has the right level of
spread in the meridional direction, and consider the sen-
sitivity of the ensemble performance to the spread in
the zonal direction. This can be investigated by consid-
ering ensembles with different ranges for the parameters
lj. Figures 15 and 16 show some results relative to the
10-mm threshold.

Due to the systematic position error the control fore-
cast of 10 mm of rain has no skill (both in terms of TS
or KSS, not shown). By contrast, the ensemble mean
has a positive TS and a positive KSS if the ensemble
spread is neither too small nor too large (Fig. 15a).
Similarly, the ensemble probabilistic prediction of 10
mm of rain has a positive BSS and a high ROCAS only

if the ensemble spread is neither too small nor too large
(Fig. 15b). Similarly, the potential forecast value is pos-
itive for both the ensemble mean forecast (Fig. 16a) and
the ensemble probabilistic prediction (Fig. 16b) only if
the ensemble spread is neither too small nor too large.
Note that results indicate that even if the ensemble
spread is not properly tuned (but not outrageously
wrong) ensemble probabilistic predictions can be skill-
ful and have potential economic value.

7. Conclusions

Issues related to the verification of the accuracy of
categorical and probabilistic forecasts of discrete di-
chotomous events (occurrence/nonoccurrence) have
been discussed. Synthetic forecasts have been compared
to synthetic verification fields. The accuracy of cate-
gorical and probabilistic forecasts has been assessed us-
ing a variety of accuracy and skill measures (hit rate,
threat score, probability of detection and probability of
false alarm, bias, Kuipers skill score, Brier score, and
skill score, ROC area score and skill score, rank prob-
ability skill score, probability of outliers).
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A simple decision model has been used to estimate
the potential economic value of both categorical and
probabilistic forecasts (as in Richardson 2000). It has
been shown that the potential economic value can be
written as a weighted difference between the system
probability of detection and the probability of false de-
tection. It has also been shown that the Kuipers skill
score gives the maximum potential economic value.

Each forecast accuracy or skill measure summarizes
in one number the differences between observed and
forecast pattern. It has been shown how difficult it is to
associate to one specific number the actual difference
between the two patterns, and that the use of more than
one accuracy or skill measure gives a more complete
picture of the performance of a system. Different mea-
sures of forecast accuracy have been shown to have a
certain degree of coherence in behavior, all showing a
qualitatively similar response to increasing model er-
rors. Nevertheless, it has been also shown that a quan-
titative disagreement of the response can occur, with
forecasts judged to be skillful according to one measure
judged to have no skill according to others. This sup-
ports Murphy’s (1991) indication of the large dimen-
sionality of the verification problem.

The sensitivity of accuracy and skill measures to im-
posed random and systematic errors has been investi-
gated. It has been shown how accuracy and skill mea-
sures are sensitive to the area definition, thus indicating
that care must be taken when comparing forecast scores
for different regions characterized by different observed
frequencies. The sensitivity of accuracy and skill mea-
sures to amplitude, position and ‘‘shape’’ errors have
been studied. Considering the Brier skill score or the
ROC area skill score, results indicated, for example, that
position errors could have bigger effect than over/un-
derestimation errors.

Ensembles with different size and systematic model
errors have been compared to investigate the sensitivity
of probabilistic forecasts to ensemble configuration. Re-
sults have shown that both model errors and ensemble
size affect the accuracy and the potential economic value
of an ensemble system, with small-size accurate ensem-
bles performing on average similarly to large-size less
accurate ensembles. Results have also confirmed that
any ensemble system should have the right level of
spread to be skillful and have high potential economic
value.

The potential economic value of categorical forecasts
generated by single deterministic forecasts given by one
member of an ensemble of 51 forecasts has been com-
pared with the potential economic value of the proba-

bilistic forecasts given by the whole ensemble. Results
indicate that, independently from the model random or
systematic error, ensemble-based probabilistic forecasts
exhibit higher potential economic values than categor-
ical forecasts.

These results indicate that the design of a forecasting
system should follow the definition of its purposes (i.e.,
the definition of the accuracy measures used to gauge
its performance). The design should be such that the
ensemble system maximizes its outcome as assessed by
the accuracy measures that best quantify the achieve-
ment of its purposes.
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